近年來,由於人類對自然現象、社會現象或經濟現象的認知意識逐漸產生多元化的研判與詮釋,也因此致使人類思維數據化的概念已逐漸廣泛的被應用,對數據分析已從傳統以單一數值或平均值的分析作法,演變為考量多元化數值的分析作為。有鑑於此,在數據資料具備「模糊性」特質的現今,藉由模糊區間的演算方法,進一步探討之間的關係。傳統的統計分析,對於兩變數間線性關係的強度判斷,一般是藉由皮爾森相關係數(Pearson’s Correlation Coefficient)的方法予以衡量,同時也可以經由係數的正、負符號判斷變數間的關係方向。然而,在現實生活中無論是環境資料或社會經濟資料等,均可能以模糊的資料型態被蒐集,如果當資料型態係屬於模糊性質時,將無法透過皮爾森相關係數的方法計算。因此,本研究欲研擬一個較簡而易懂的方法,計算模糊區間資料的相關係數,據以呈現兩組模糊區間資料的相互影響程度。此外,若時間性之模糊區間資料被蒐集之際,我們亦提出利用中心點與長度之模糊自相關係數(ACF with the Fuzzy Data of Center and Length;簡稱CLACF)及模糊區間資料之自相關函數(ACF with Fuzzy Interval Data;簡稱FIACF)的方法,探討時間性模糊資料的自相關係數予以衡量。
Book Details: |
|
ISBN-13: |
978-3-330-82055-5 |
ISBN-10: |
3330820551 |
EAN: |
9783330820555 |
Book language: |
中文 |
By (author) : |
志清 楊 |
Number of pages: |
80 |
Published on: |
2017-01-06 |
Category: |
Theory of probability, stochastics, mathematical statistics |